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Abstract A theoretical treatment is given~of the onset of lateral conductance in a dot lattice, 
which occnn as the number of elect” per dot is increased, thereby mlarging the dots until 
they touch. This is the threshold point between a dot and an antidot lattice. The conductance 
rise has been experimentally measured and we compare our predictions to those results. Two 
conduction mechanisms are considered in detail; band conductance in B perfect lattice and 
hopping conduction in a lattice with slight disorder. Both give an exponential rise of the lattice 
conductance with elecmon number. The effect of strong disorder is discussed. and using a 
mapping to a random resistor network it is shown to lead to a far more gradual rise in the 
conductance. 

1. Introduction 

In recent years there has been much study, both theoretical [I, 2, 3, 4, 51 and 
experimental 16, 7, 8, 91 of the properties of lattices of dots and antidots. These systems 
are usually created when the electron density of a two-dimensional electron gas (ZDEG) is 
modulated, often by the action of an applied electrostatic potential. This potential can be 
fabricated in many ways, such as application of a voltage to a specially shaped gate on the 
surface of the semiconductor [IO], or by etching a periodic pattern into this surface [ll, 121. 

Most commonly, the applied potential is periodic in two orthogonal directions. If it has 
a very large amplitude, or if the electron density is small, then the electrons will be confined 
to the regions around the minima of this potential. This gives a square lattice of dots, each 
containing just a few electrons. These dots can be studied using a variety of techniques but 
most commonly using capacitive [12, 131 or spectroscopic [I I] measurements. Transport 
through a single dot, achieved via tunnelling to and from some nearby ZDEG ‘leads’ has 
also been seen [14, 151. 

Suppose we now reduce the amplitude of the potential  or^ increase the number of 
electrons. The minima of the potential start to fill and the dots increase in size. Eventually 
a point is reached where the dots just touch. We will call this threshold. On further 
increasing the electron number the ZDEG becomes connected across the entire plane. We 
then have a ‘sea of electrons’, rising out of which are the maxima of the potential. The 
area around each potential maximum is devoid of electrons, and is known as an antidot. 
Most studies of antidot lattices, whether experimental or theoretical tend to concentrate on 
the magnetotransport [6, 7, 8, 3, 4, 51 or spectroscopic [9, 1, 21 properties. 

Consider a dot lattice just below threshold. The dots will be fairly close together, and 
there will be a chance for an electron to tunnel or hop from one dot to a neighbouring 
one, leading to a finite lattice conductivity. As the dot system gets closer to threshold this 
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conductivity will increase. This onset of conductance has been seen experimentally in zero 
magnetic field. 

A set of experiments carried out by Sundaram [I61 showed this threshold behaviour 
very clearly. These experiments studied ZDEGs formed in a modulation doped GaAs GaAlAs 
heterostructure. A modulating potential was created using the ion implantation technique. 
The number density of the electrons was increased stepwise using the persistent photo- 
excitation effect, and the conductance measured at each step. The results showed a gradual 
rise of the conductance with electron density. The data were not complete enough to 
determine a functional form for the rise in conductance with electron number. 

Other experiments were performed by Ismail er al [IO]. These were carried out on a 
silicon MODFET which had a specially shaped gate to produce the modulating potential. The 
amplitude of the potential could be changed by altering the gate voltage. As the voltage 
was lowered from the insulating regime the rise in conductance could be measured. This 
time the results showed a far more rapid rise over a small change in gate voltage. 

In this paper we will be concerned with the theoretical description of this onset in 
lateral conductance as threshold is approached. We will derive the theoretical variation of 
the conductance with electron number and try to explain the differences between the two 
experimental results. 

Two different conduction mechanisms will be considered in detaiI; band conductance 
which is applicable to a lattice with very little or no disorder, and conduction via phonon 
assisted hopping between dots, which is applicable to a disordered lattice. In both of 
these mechanisms the conductance depends greatly on the shape and size of the intervening 
potential barrier between dots. It is therefore important to have information about the self- 
consistent screened potential that the electrons will feel. Additionally we will require some 
information about the nature of the electronic states in each dot. Before we can discuss 
either conduction mechanism we must address these two problems. 

The outline of this paper is as follows. Section 2 outlines the calculation of the screened 
dot lattice potential. In section 3, the form the bound electron states in each dot will take 
is discussed. The band conductance of a perfect dot lattice is derived in section 4 and then 
section 5 treats the hopping conductance of a slightly disordered lattice. Following on from 
this in section 6 we discuss the effect on the conductance of a large amount of disorder in 
the dot lattice potential. 

2. Calculating the self-consistent dot potential 

As the first step we require a model for the appliedpofeniial which the electrons in the 
2DEG then screen. This applied potential depends upon the fabrication method. We chose to 
model the systems used by Sundaram [16]. There, the dot lattices were created using the ion 
implantation technique. This uses ion damage to trap electrons in pockets lying just above 
the 2DEG. These trapped electrons set up a periodic electrostatic field. Correspondingly we 
considered a square array of charged disks, each with charge -Q placed a distance h above 
the ZDEG. The lattice constant is a .  From the experimental details presented in 1161 a lattice 
constant of a = 800 nm, a disk radius r = 300 nm and h = 40 nm were used. The electron 
densities reported in [16]~suggested that there were about 120 electrons per dot at threshold, 
which corresponds to a charge per disk of Q = 1000e. 

To calculate the screened potential we used a numerical procedure, described in [17]. 
This is based upon the Thomas-Fermi approximation and gives us a set of self-consistent 
screened potentials with differing number of electrons per dot (i.e. differing chemical 
potentials). Some examples are shown in figure 1. The general character of the screened 
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potentials is that they are relatively shallow where the electron density is non-zero and rise 
steeply beyond the edge of the electron gas. 

0.04 

0.02 

0.oc 

-0s 
9 e -  Cd) - -yP 

Figure 1. Three-dimensional plot of the numerically calculated screened potential for the applied 
potential 4,. As the sequence progresses (a)-(d) the number of electrons per lattice square 
increases. Each plot shows only one quarter of a lattice square with lanice constant U = 800 nm. 
Defining N to be the number of electrons per lanice square and b to be a vector on the edge of 
the electron gas we have (a) N = 36, b = (188.0); (b) N = 114, b = (344.0); (c) N = 168, 
b = (400.31); (d) N = 813, b = (400,156). The contour line on plot (d) shows the edge of 
the electron gas. The x and y axes show distance in nm. 

Although we used a very specific model for the applied potential, as discussed in [17] it 
is one of a class of potentials that all exhibit similar behaviour. Therefore the conclusions 
we draw from the conductance calculations should be applicable to other systems as well. 

3. The electronic states in a single dot 

Of all the states in each dot we would like to know which states are going to be important, 
what shape their wavefunctions take and their energy spectrum. The important states for 
conduction will be the highest energy bound states. With typically 120 electrons per dot at 
threshold it is reasonable to use semiclassical methods to study them. Although in principle 
a full solution can be found for any V ( n ,  y )  [IS] in practice this is only easy for a separable 
potential. 

Not all of the high-energy states will be important. This is apparent when we consider 
the shapes of the wavefunctions. To illustrate this, consider the classical path corresponding 
to each WKB state. Figure 2 shows two paths for states close to the threshold energy (the 
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Figure 2. Contour plot of the potential of a single dot. The minimum is at the centre and the 
maxima of the potential lie at the corners of the square (indicated by a ‘+’). The heavy lines 
indieare classical elecrron paths. 

energy below which all states must be bound). One path merely oscillates along the x axis. 
Its corresponding wavefunction is narrow in the y direction but elongated in the x direction. 
It will have a high probability of tunnelling to a similar state in a neighbouring dot on the 
x axis. The other path shown is much more circular. The wavefunction corresponding to 
it is more compact. It will have a very low tunnelling probability to a neighbouring dot. 
Such states are not important for conduction. 

In general, V(x, y )  is non-separable and in the classical treatment of the problem there 
could now exist chaotic electron trajectories within each dot 119, 201. However all realistic 
potentials will share some common features, such as a minimum at the origin, aV/ay 
vanishing along the line y = 0, and saddle points at (0, fa/2), (fa/2, 0). The oscillatory 
orbits along the x or y axis will still be stable, and the corresponding wavefunctions will 
retain their elongated shape. The chaotic behaviour will affect most strongly those orbits that 
venture significantly in both the x and y directions. These states were however identified 
as not being important for conduction. Hence in our regime the chaotic dynamics can be 
neglected. 

Now consider the energy spectrum. If the potential is separable the energy of a state will 
then split into ‘x’  and ‘y’ contributions; E,,, = E,” + E;, each of which can be obtained 
from the Bohr quantization condition (see for example [21]) The states that are elongated 
in the x direction have a spectrum E.1 = E: + E: where E: is the lowest 1D energy. 
For realistic dot potentials this has a simple ladder-like form. In general V(x, y) is not 
separable. However as the elongated states only sample the space close to one of the two 
axes it can be argued that the energy spechum retains its ladder form. 

As an example we applied the WKB quantization to the simple potential 

V(x,y)= v o [ c o s ( ~ )   cos(^)] 
with VO = 2.0 meV and a = 800 nm. Figure 3 shows the resultingfull energy spectrum. 
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The levels corresponding to the elongated states are shown with a heavy line and are re- 
plotted to the right of the spectrum. The dotted line shows the energy below which all 
states are bound. 
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4. Band conduction in a perfect lattice 

The bound states of each individual dot will be perturbed by the potential of the rest of the 
lattice. From the tight-binding viewpoint this leads to band formation. In this section we 
will calculate the expected widths of these bands and then the conductance of these bands 
as a function of the electron number N .  In order for the tight-binding calculations to be 
valid the overlap between the states must be small: This assumption breaks down close to 
threshold. 

4.1. Band formation 

So long as the bandwidth is small compared to the unperturbed level spacing it will suffice 
to consider just one pair of degenerate states in each dot. We will denote these two base 
states in the dot at R by laB) and l b ~ ) .  where we will take [aR) to be elongated in the x 
direction. These states have energy EO. 

In principle we would now need to perform a degenerute tight-binding calculation 
using'the sets ( 1 a ~ ) ) ~ a n d  [ l b ~ ) ] .  However simplifications can be made. Firstly the overlap 
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(aRlbR) = M will be very small and can be taken to be zero. In addition the following 
matrix elements will be small and can be neglected: 
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(asl(V - vR)lbT) (bsl(V - vdlaz-) 
(aS+jl(V - vR)laS) (bS&il(V - VR)IbS). 

Here, V is the lattice potential and VR a dot potential. The first two are small, by virtue 
of the small overlap of  la^) and The third matrix element involves the overlap of a 
state IaR) and an identical state located a lattice constant a away in the y direction. This 
overlap will be small because the state  la^) is narrow in the y direction. The last matrix 
element is small for a similar reason. The remaining (dominant) overlaps are then 

L = (as+il(V - VR)las) = (bsi j I (V - V R ) ~ ~ S )  
JO = (aRIV - VRlaR) =~(bRIv  - VRlbR). 

We are then left with two non-degenerate tight-binding calculations to perform. The results 
of such calculations are well known (see for example [22]) and we can immediately write 
the two solutions 

E, (k) = Eo + Jo + 2L cos(k,a) (1) 
Eh(k) = EofJo+2Lcos(kya). ( 2 )  

For each of these solutions the energy depends only on one component of the wavevector 
k. Despite the fact that the dots are arranged on a ZD square lattice, because we neglected 
all mixing of the laR) and IbR) states the bands that form have a ID character. The two 
solutions are orthogonal to each other, and their energies overlap completely. 

The higher-order corrections to +is structure will involve mixing of the states and this 
restores a two-dimensional character. However these corrections are very small [23], and 
the ID character is retained to high accuracy. 

4.2. Estimation of the bandwidth 14LI 

There are at least two ways of making an estimate of this integral. 
Firstly, the overlap L gives a measure of the tunnelling probability of an electron through 

the barrier between dots. Such probabilities can also be evaluated quasiclassically [NI. For 
small tunnelling probabilities we obtain 

(3) 
2 14L. = -hoe-' 
il 

where o is the classical frequency and the quantity E is given by 

the integral being taken across the narrowest paa of the barrier. Here E is the electron 
energy measured from the zero of the potential energy (-e+). 

The second method will be described in more detail later. Here we try to evaluate the 
integral directly and it gives the following estimate. 

(5)  
where W is the width of the potential barrier, H is its height and A is a distance which is 
small compared to a typical width W .  

Both estimations fail when the barrier becomes small, and predict that the bandwidth 
goes to zero. The quasiclassical method breaks down for two reasons: (a) the tunnelling 

1 4 ~ 1  E (w + ~ ) ~ - ( l / h ) m w  
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probability is no longer small and equation (4) fails, and (b) the classical motion approaches 
a separatrix. The period diverges and the normalization of the semiclassical wavefunctions 
breaks down. In the second, 'direct' method, certain assumptions made when evaluating 
the integral fail. 

0.12 " " ' " " " " ' ' 

0.10 o quasiclassical 
00 

0 

0 2 4 6 8 
IN-N,~ 

Figure 4. The tight-binding bandwidth calculated by both the quasiclassical and square-well 
methods. The line is 0.154exp(-0.571N - Ncl). 

The results are shown in Figure 4. Both methods give exponential tails, 14LI LX 

exp(-ujN - N J ) .  where ( N  - Nc)  is the difference between the number of electrons 
per dot and the number per dot at threshold. For the quasiclassical method cy = 0.57f0.01 
and for the direct method 01 = 0.61 f0.02. This form is expected considering equations (3) 
and (5). Only the quasiclassical method gives an absolute value for the bandwidth and the 
'direct' points have been rescaled to this amplitude. 

The width of the bands is of order 0.01 --t 0.08 meV. This is smaller than the level 
spacing of the elongated states, which is of order 0.15 meV, justifying the use of just one 
pair of basis states per dot. 

4.3. The band conductance 

We shall now assume the existence of a weak disordered potential created by a system of 
isolated randomly positioned donor impurities situated close to the ZDEG. - 

For a large lattice the conduction is diffuse and we can use a standard Boltzmann 
equation approach. The details are well known, see for example [22] .  For an applied 
electric field E in then direction the current density will be 

Here r ( E )  the scattering time, u ( E )  the electron velocity and p the Fermi-Dirac distribution 
function. One can show that [23] 5 o( u ( E )  (physically, the scattering rate should be 
proportional to the density of states). 

The conductance due to a single band centred at energy E, will be 
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The total conductivity can be obtained by summing contibutions from all the bands. At 
T = 0, the derivative of the Fermi function will be a delta function and the integral becomes 

R W Tank and R B Stinchcombe 

The conductance will therefore show oscillatory behaviour. It will be zero when EF lies 
between two bands and maximum at the centre of each band. The height of the maximum 
is proportional to 12LI2, showing an exponential increase with electron number as threshold 
is approached. 

However all real experimental systems are at finite temperature. The typical bandwidth 
for our model lies in the region 0.02 --t 0.08 meV, comparable to experimental thermal 
energies. In this case the width of the derivative of the Fermi function is as large or larger 
than the bandwidth. The conductivity will then be thermally averaged and more than one 
band will contribute. This leads to a smooth exponential rise 

with 01 = 0.6 for our system. 
There is some evidence for the existence of this behaviour in the experiments by Ismail 

et a1 [IO]. These were canied out on a MODFET device at 4.2 K in zero magnetic field. 
The modulation of the zDEG was achieved by applying a voltage to a specially shaped 
square lattice gate on the surface of the semiconductor. The source-drain current was 
measured as a function of this source-gate voltage. For small changes, one would expect 
the change in electron number to be proportional to the change in voltage. We therefore 
predict that the conductance at threshold should rise exponentially with the source-gate 
voltage. Figure 5 shows points on an experimental curve taken from [lo], on top of which 
is a fitted exponential curve. This system shows the predicted threshold behaviour. There 
are slight oscillations superimposed onto this rise. This indicates that the system is in 
a regime where the temperature had not yet completely smeared out the band structure 
oscillations. 

10 " " ~ " " ' " ' ' " "  I 1  

-0.20 -0.15 -0.10 -0.05 0.00 
v,, (V) 

Figure 5. This shows an experimental curve taken from [IO] which shows threshold behaviour. 
The line shows a fitted exponential curve Ioexp(KV,,) with Io = 15.3 nA and Y = 21.5 V-'. 
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5. Hopping conduction in a lattice with slight disorder 

The bands discussed above were very narrow, and a small amount of disorder in the screened 
potential will be enough to destroy their formation. A plausible mechanism for the lattice 
conductance would then be via hopping of electrons between bound states in neighbouring 
dots. In this section we will obtain an analytic expression for the dependence of the hopping 
rate on the parameters of the barrier and wavefunctions. We then examine the distribution 
that will arise for the conductances of the individual barriers, and finally relate this to the 
lattice conductance. 

5.1. Calculation of the hopping rate 

Consider two dots neighbouring in the x direction which are labelled i and j .  Each will 
contain a bound state Yi(r) and YL(r) with energies E: and EL. Again the potential of 
the rest of the lattice causes mixing, leading to the formation of two new states 

@(P) = Y;(T) +djY;(r )  
@'(T) = YL(T) - diYA(7). 

Here the quantities di and dj are obtained from a variational method; for example 
minimizing (@ilZf/@i)/(@ipi) will give dj. The phonon assisted hopping rate will be 
given by 

where Am, and pph are the energy and density of states of a phonon with wavevector p. In 
the deformation potential approximation [E] the matrix element Mij is given by 

Here p is the density, V the volume, vs the velocity of sound and np is the occupation 
number of a phonon state with energy Am,. 

In order to proceed analytically we need to assume trialfunctions for the potential and 
wavefunctions. These are chosen to capture as much of the physics as possible, and yet 
also have a simple enough form that we can evaluate the integrals analytically. In practice 
this second requirement will play the strongest role in our choice. 

To represent an elongated state centred at the origin we chose the form Y ( r )  = 
W)@(Y). Here 

Even Odd 
x < -b $(x )  = -cI eklx 

- b < x < b  q ( x )  = C2COS(.k2X) @(x)  = CZ sin&x) 
x > b  @ ( x )  = cI $ ( x )  = c1 e-klx. 

$ ( x )  = cl eklx 

Cz and CI are normalization constants. The form for the exponential decay in the classically 
forbidden region is a generic one, except for strongly localizing potentials (such as a 
quadratic potential) which are not suitable here. The natural choice for @(y)  is 
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This is suitable because close to the line y = 0 all realistic potentials will !ook harmonic in 
the y direction. For our system 1 = 50 nm. The two states *A(?-) and "A(?-) will then be 
specified with the parameters kl, k z ,  b; and q1,q2, bj. 

Following on from the assumption that the wavefunction separates, we will assume a 
separable potential V ( x )  + V ( y ) .  For a dot centred at (a/2,0) we chose 
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O < x  < a / 2 - b  
a/2 - b < x < a/2 + b 
a / 2 +  b < x < a 

V ( x )  = v, [I - cos (2nx/a)] 
V ( x )  = Vd [1 - cos (2nx/a)] 
V ( x )  = vo [I - cos (2nx/a)] . 

(11) 

Here the constant Vd > V,. Figure 6 shows the true and trial potentials for N = 100. The 
trial function does describe the bamer quite well, and we therefore hope that it will be able 
to capture the physics of the problem. 
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other systems. Therefore, we believe that the form of (12) will capture the physics of the 
transition rate for this and other systems, although the exact functional form would change. 

C 
T-  

a I 
T I 

Figure 7. In each dot there will be two elongated stJtes impor" for conduction. This is 
indicated here by the pain ab and cd. The energy A is the me& level spacing of the elongated 
states. 

5.2. The distribution of individual conductances 

Consider two states a and b either side of a barrier. The conductance of the barrier due to 
these states will be 1261 

Here fa is the occupancy of state a, CI = a or b. In practice each dot will contain two 
states that are important for conduction. One state will lie just below the Fermi level, EF, 
and one state just above EF. This is illustrated in figure 7. In order to simplify the analysis 
we assume that kT is small compared to the mean level spacing A .  Then the distribution 
factors (e.g. fa(l - fd)) will be close to either zero or 1. This implies that there is little 
current between the pairs ac or bd, but significant current between the pairs ad or bc. The 
effective conductance between a dot i and a neighbouring dot j is then 

(14) U .  ,, - - uo [ W ( A E )  + W ( 2 A  - A E ) ]  

where A E  = E, -Ed. For our system, the above simplification requires temperatures small 
compared b l . 7  K. Typical experimental temperatures in [16] were 0.35 -+ 1.5 K. So the 
approximation kT << A begins to fail at higher temperature. 

The hopping rate W depends upon the four parameters k ,  w ,  SE, V& In a disordered 
lattice these will all have some distribution of values. For simplicity we will take a 
distribution in only two, namely k and A E .  This is not so bad because k and w always 
appear combined as their product and the quantity VL varies little with N and so would 
have a narrow dishibution. 

Consider the distribution of A E .  A small amount of disorder will not greatly affect the 
level spacing, but will shift the spectra of neighbouring dots relative to each other. Thus 
we chose the distribution 

for E1 e A E  e El 

&(AE)  = 0 otherwise. 
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The upper bound is given by the mean level spacing in a single dot; EZ = 0.15 meV. 
The lower bound arises from level splitting and is of the order of the bandwidths; 
E ,  = 0.01 meV. 

The distribution of k values has no strict bounds and for simplicity we chose a Gaussian 
form 
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The distribution of values of (kw) will also be Gaussian. However as increases so will 
w and hence so will the width of the distribution; w8k. This is physically reasonable. 
As the electron number decreases so will the screening of both the applied and disordered 
potential, increasing the absolute size of the disorder. 

This regime of slight disorder occurs when the width of the distribution of k is small 
compared to the range of k over which the conductance of a barrier will show a large rise. 
In our case this range is 6k = 0.03 nm-'. The effect of strong disorder is discussed later. 
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Figure 8. Some example results for '$e distribution Ps(s). In (a) all plots have Sk = 0.05 nm-'. 
The numbers indicate the values of k. In @) both plots have k = 0.27 nm-'. 

Given the distributions Px, PE and the expression (14) for a single conductance, it is 
fairly straightforward to calculate the distribution for U. Figure 8 shows results for different 



~ . ~.~ ~ ~ Lateral conductance of perfect and disordered dot latices 861 

values of both and Sk. For clarity we plot s where 

s(k,  w ,  A E ) .  (17) 
p .  - "d 

f l  + I / ~ B T  '1 - 00 

The constant 00 is such that the maximum value of s is 1. Figure 8 shows clearly how as 
the electron number is increased (and 1 decreases) the weight of the distribution shifts to 
higher values, and also how an increase in the disorder leads to a wider distribution. 

5.3. The lattice conductance 

We can now view the dot lattice as a random resistor network. The nodes represent the 
dots and the links the barriers. There is a well established decimation (or real space 
renormalization group) procedure for treating such systems [27, 281. This involves the 
repeated application of a transformation in which the four conductances round a single 
lattice square, U], U*, u3, u4, are replaced by a single conductance U* across the diagonal, 
where from the rules for serial and parallel combination of conductances 

The effect of this decimation is shown in figure 9. After repeated application the distribution 
for the new conductances U' will tend towards the distribution for the conductance of the 
entire lattice. 

Figure 9. This shows the result on 
decimation procedure. 

. ,  

of the lattice of two successive applications of the 

This decimation procedure is in fact only approximate as it introduces correlations 
between neighbouring resistors and next nearest and higher-order neighbours on the 
decimated lattice. For example consider the third latticeshown in figure 9. The conductances 
AB and AC will be correlated because the two sets of four conductances from which they 
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were derived both contain a common element, namely conductance AD. In general these 
correlations do not have a large effect [27], and we are justified in neglecting them. 

In any finite system we cannot indefinitely iterate the decimation. After n iterations, 
the area of a lattice square will increase by a factor of 2". For finite size effects not to 
be important, the number of squares in the original lattice must be large compared to this 
number. In the results that follow we used at most 10 iterations, giving a factor of 1024. 
The experimental systems 1161 contained typically 65000 dots, allowing us to neglect the 
finite size. 
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0.0 0.2 0.4 0.6 0.8 1 .o 
S 

Figure 10. The results of decimation applied to the distribution with = U.27 nm-' and 
Sk = 0.05 nm-'. The plot shows the 1st. 3rd. 5th and 9th decimations. The dot-dash line 
shows the original distribution. The decimated distributions are shown as solid lines, becoming 
narrower with increasing number of the iteration. 

0 2 4 6 8 
IN-N,I 

Figure 11. Varialion of the conductance of a square lattice with electron number, IN - NJ. 
The line shows the fitted cume a =aolN -Nclexp(-1.311N- N& 
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In figure 10 we plot the result for one particular distribution, showing how it quickly 
narrows to a single value. The variation of this lattice conductance with N is shown in 
figure 11. The results for the two values of Sk are very similar. Both curves show a 
downturn at small N. This is spurious, &d is caused by the breakdown of equation (12) 
for Wrj for small values of k. The tail of the conductance for larger k fits well to the form 

0 u o l ~  - ~,le-ylN-N’I 

where the factor y = 1.31 f0.04 for Sk = 0.05 and y = 1.35 3= 0.04 for 6k = 0.01. These 
are comparable to the values for the exponential decay in a perfect lattice. The functional 
form of U is slightly different due to the additional factor of IN - Ncl. 

Once again the conductance rise shows a rapid increase over a small change in the 
electron number. While in agreement with the experiments of Ismail et nl [lo] this is in 
contrast to the results presented by Sundaram [16]. In the next section we will argue that 
this discrepancy can be resolved by the presence of a large level of disorder. 

6. Conduction in the presence of strong disorder 

For simplicity we assume now that the conductance of a single barrier depends upon just 
one variable rather than four, namely the variable k. The strongly disordered regime occurs 
when the width of the distribution of values of k is greater than the range of k over which 
the barrier conductance u(k) shows a large increase. 

When k2 is large the bamer is high, and when k2 drops below zero the barrier is 
surmounted (the Fermi level lies above the saddle point in the potential). If the distribution 
of k is wide, a significant number of barriers are very high, and a significant number 
have been overcome. The fraction that lie in the intermediate stage will be small, because 
this stage covers only a small range in k. The distribution of bond conductances then 
shows a large peak close to zero, and close to the conductance value of a small open 
constriction. This approximately binary distribution is characteristic of a bond percolation 
problem. Correspondingly. the lattice conductance depends less on the functional form of 
a(k) and is partly governed by the percolative character of the problem. 

To illustrate this we construct an approximate analytic form for u(k). For kZ positive 
we assume the form 

fork > 0. 
1 

e-uk’ + 1 
o ( k )  = 

This is the well known factor for tunnelling through a one-dimensional barrier [21]. Here 
CY can be deduced from the screened potentials. When kZ drops below zero the two 
neighbouring dots will be joined by a constriction. We have not addressed the conductance 
of an open constriction. However as this section is illustrative we will make the unjustified 
assumption that the conductance is proportional to the number of states in the constriction 
(analogous to a point contact), ‘which in turn we will assume is proportional to the 
constriction depth.  this quite arbitrary choice will give 

u(k) = pkZ + for k e 0 

where again  the^ constant p can be obtained from the screened potential assuming a level 
spacing in the constriction of 0.1 meV. 

In figure 12, we show the resulting bond conductance distribution, assuming once again 
a Gaussian distribution for k. As the width of the distribution increases, the conductance 
distribution develops a ‘two peaked’ structure typical of percolation conductivity 127, 281. 
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is changed for a fixed Sk then there is a shift in the weight of the distribution between 

a . . . . ~ . . ~ . ~ . ~ ~ ~  

__ ~ 6k=0.01 nm-' 

i. ( I t , ,  . . I  -y.::sF ,.,_..,_. ,. , 
0.0 0.5 1 .o 1.5 

U 

F p r e  12. The conductance distribution. P-(n), for three different values of the width Sk. All 
plots have = 0.02 nm-'. 

6k=0.03 nm-' 

n 7n 6k=0.06 nm-' 
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Figure 13. The lattice conductivity deduced by decimation, plotted as a function ofthe difference 
W e e n  the number of e l e m n s  per dot at lhreshold and the mean number of electrons per dot. 
The lines show fitted exponentiala. 

Applying the decimation procedure gives the Iattice conductance shown in figure 13. 
As the magnitude of the disorder increases the conductance rise becomes slower. We can 
attempt to again fit an exponential form U 0: exp(-ylN - N,I) to the data values for 
the conductance, giving y = 0.39 3= 0.01 for 6 k  = 0.03 nm-' and 0.091 j, 0.004 for 
Sk = 0.06 nm-'. These values are dramatically lower than the exponents for a weakly 
disordered or perfect lattice, and the fit is poorer. Returning to the experimental results 
presented by Sundaram [16], we can now see that the slow rise in conductance observed is 
an indication of a significant level of disorder in the dot lattices studied. 
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7. Conclusions 

In this paper we considered the onset of conductance in a dot lattice as it approaches 
threshold with an antidot lattice. At any one point the transport through the lattice depends 
greatly on the size of the potential barrier between dots. It was therefore important to 
quantify the dimensions of this barrier and the manner in which it changes with changing 
electron number. We also required information about the wavefunctions of the dot states 
that are important for conduction. We argued that, for a dot w with sufficient number of 
electrons, these states have a highly elongated shape, extended along one axis of the lattice 
and narrow along the direction of the other axis. Their energy spectrum is ladder-like. 
Whereas chaotic orbits will exist within a dot, these will not play an important role in the 
conduction process. This is in contrast to the case for an antidot lattice, where the chaotic 
orbits are very important 13, 291. 

Using these results we calculated the lateral conductance of a dot lattice in zero magnetic 
field. We considered two cases, namely that of a perfect lattice and that of a lattice with slight 
disorder. Corresponding to these two cases we had two different conduction mechanisms. 
For the first we csnsidered the band conductance of a  tightly bound band, and for the 
second conduction via phonon-assisted hopping of electrons between neighbouring dots. 

Both mechanisms gave similar results. This is not so surprising as in essence they both 
depended greatly on the variation with electron number of the ease of tunnelling through 
the barrier between neighbouring dots. As threshold is approached there is a large increase 
in the conductance over a small change in the electron number. The tail of the conductance 
rise was exponential in character. For our system the region in which the conductance 
turned on encompassed a total change in the mean electron number per dot of 8. This 
corresponds to a fractional change of 0.07. Such a dramatic rise over a short range has 
been seen in experiments by Ismail et a1 [IO]. However in the experiments by Sundaram 
[16] the rise in conductance occurred over a f a rhge r  change in electron number. 

In the last section we showed that this discrepancy could be explained by a strong level 
of disorder being present in the systems studied in [16]. This is plausible considering the 
differing fabrication processes. A lithographic technique was used in [lo], with which it 
is relatively easy t o  accurately define a periodic gate. In contrast it is harder to accurately 
position the ion beam used in [I61 to produce the patterning. 

With the increasing advances in lithographic techniques it is becoming easier to produce 
systems with less and less disorder. If the system is such that it can be swept from a dot 
to an antidot lattice then it should exhibit the threshold phenomena discussed in this paper. 
The rapidity of the conductance rise at threshold will be a good experimental indication of 
the level of disorder in the system potential. 

~ The variation in conductance with increasing electron number was calculated. 

~ 
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